
In finance, as in so many other areas of human

endeavour, ease of use usually comes with a

compromise price tag attached. In some cases that

compromise is restricted functionality or flexibility -

in others it is speed. Excel is a good example of the

latter case. While it allows those with minimal

programming expertise to achieve productivity, its

performance can be less than ideal for production

use in highly active markets such as FX. 

An obvious example of this problem is exotic FX

options, where many traders and quants use Excel

for prototyping and testing pricing models. While

performance issues are no great matter (other than

tedium and productivity) at the prototyping stage, it

is a very different matter when the same

spreadsheet platform is also used in a production

environment. Particularly where a spreadsheet

contains a matrix of option prices, strikes and

expiries that have to recalculate in real time, its

calculation latency can become a matter of

competitive disadvantage. In theory such a

spreadsheet should not of course be used in a

production environment, but there are a number of

reasons why it may in practice:  

•  Time to market – in many cases the builder of the

original spreadsheet is unlikely to have lower

level (e.g. C++) programming skills. To convert

the spreadsheet business logic to a more efficient

form such as a Dynamic Link Library (DLL) or

Excel C++ add-in (XLL), they will have to

explain the methodology to a programmer.

This can take a considerable time and will

probably be a tediously iterative process. 

•  Errors – unless the programmer has strong

quantitative understanding there an increased

risk of errors being introduced during the

translation process. 

•  Resources – a suitably qualified programmer,

who could convert the spreadsheet, is simply not

available.

Automation and process

It was in response to a client confronting exactly

this type of situation that Savvysoft developed

TurboExcel2. The objective was to produce an

application that was capable of automatically

converting a spreadsheet to a more efficient

format, such as a DLL or XLL file. The conversion

process had to be able to handle both the code

worksheet cells and any associated VBA (Visual

Basic for Applications) code.

This represents two entirely separate challenges. In

some respects, translating VBA to C++ is the more

straightforward of the two, as the sequence of

translation can follow the same sequence as the

original VBA with a line-by-line conversion. There

are one or two important nuances – for example 

102   october 2005 e-FOREX   october 2005 e-FOREX   103

C++ syntax can differ dramatically from VBA, which

necessitates a quite intelligent parser. Some additional helper

functions are also necessary in order to catch such errors as

divide by zero.  Spreadsheet conversion is a more daunting

task for an application like TurboExcel (as it is for human

programmers given the unenviable task of converting a

spreadsheet to C++), as it needs to figure out the correct order

to write out the C++ code based on the implicit relationships

among the cells. 

Another major task is the need to replicate all built-in Excel

worksheet and Analysis ToolPak functions, as well as VBA’s rich

object model. This is necessary because if the original source

code is translated into a C++ DLL that is called from an

application other than Excel then the original native Excel

functions will not be available. 

From the user’s perspective, the translation of VBA requires

little more than inputting the names of the subroutines or

functions to be converted and the desired name of the output

DLL or add-in. However, since spreadsheets don’t have nice

function declarations like VBA, the user who wants to convert

spreadsheets to C++ is required to define the range of input

cells that drive the calculation to the final output cell(s), and

their associated data types.

Speed

Compiled C++ code obviously runs far faster than VBA or code

entered directly into worksheet cells. This speed advantage

becomes increasingly apparent as the code complexity

increases. This is particularly significant for FX option traders

who are most likely to be suffering extensive recalculation

times if they are using Excel/VBA in a production environment.

Using a DLL or XLL instead should therefore significantly

enhance their response times and edge.

However, other types of FX traders can also benefit from

compiled VBA/worksheet formulae. Proprietary traders using

complex algorithms for mechanical/automated spot trading at

high trade frequencies in short time frames are very much at

the mercy of execution speed. A few milliseconds can make the

difference between profit and loss. Again, using compiled

versions of trading system logic can recoup those

milliseconds.

The speed improvements

possible from using compiled

Excel/VBA code vary enormously,

but it is not unusual to see

calculation times reduced by a

factor of three hundred or so. In

certain cases the gains can be far

greater. For example, if Excel is

being used as COM server and

receiving calculation calls 

from other applications, then

compiling the calculation logic

and calling the resultant DLL

directly will result in speed gains of

several thousand times. 

The bigger picture

The immediate speed benefits of automated code translation

and compilation are self-evident, but there is a broader

potential gain in terms of workflow enhancement. Consider the

FX trader who has to interact with multiple systems. The initial

step in their workflow might be to calculate a figure in a

spreadsheet and then re-key that into another application, take

the output from that application and re-key to another

spreadsheet, recalculate that second spreadsheet and take a

trading decision based upon the output. 

That entire process may take several minutes to complete. One

alternative might be to run the initial worksheet through an

automated translator/compiler such as TurboExcel to produce

a DLL that also incorporates a call to the external application.

Then translate/compile the second spreadsheet as an XLL or

DLL incorporating a call to the DLL produced by compiling the

first worksheet. This will obviously result in faster code

execution, but also in far faster workflow and reduced

operational risks (no re-keying errors). 

Automated spreadsheet translation/compilation can also be

used to enhance the functionality of core FX systems. For

example, an FX option desk’s main trading application may

well not be able to interact directly with proprietary models

running in a spreadsheet. (If it can it will probably be by using

Excel as a COM server – an inherently inefficient and unreliable

approach). On the other hand, such an application is far more

likely to be able to make function calls directly to a DLL.   

Latency has been an increasingly hot topic in FX of late, with several data vendors
recently announcing lower latency versions of their feeds. However, any gain in delivery
speed is all too easily negated by the latency of the applications that process the data.
Andy Webb outlines one way of addressing this latency issue for one of the most
ubiquitous applications in financial markets - Microsoft Excel1.

e F X  &  L A T E N C Y >>>

Traders
Workshop

1Microsoft Excel is a registered trademark of the Microsoft Corporation 
in the United States and/or other countries.

2 http://www.turboexcel.com



Traders Workshop

Development environment and 

enterprise gains

Automated translation/ compilation

technology effectively turns the

spreadsheet into a user-friendly rapid

application development environment. The

whole notion of structured programming

also becomes immediately available, as

spreadsheet functionality can be broken

out into a series of discrete DLL/XLLs that

can be reused and recombined for multiple

purposes. 

FX traders or quants effectively also gain

instant C++ expertise without any effort on

their part. While this enhances their

individual productivity, it also has wider

implications. The fact that the

translation/compilation is done in an

automated and consistent manner means

that an extensible and robust function

library becomes available to the FX

enterprise as a whole. Maintaining and

enhancing that library becomes a relatively

trivial and error-free matter, as the original

builders of models will not have to explain

their changes to a programmer.    

Finally, in a market environment with

increasing emphasis upon control and

transparency, automated code

translation/compilation has a number

of advantages. For example, if only

the DLL or XLL is distributed, the risks

of intellectual property theft are greatly

reduced – a DLL is far harder to reverse

engineer than Excel password protection is

to crack. At the same time, an auditor is far

more likely to understand and sign off on a

model where the business logic is readable

from a spreadsheet, yet where the

production deployment (a DLL or XLL) is

inherently secure and the process of

translation is consistent. 

An application such as TurboExcel does

just one thing: converts Excel spreadsheets

and VBA to C++ DLLs and add-ins. But the

implications of this, and its myriad uses,

are much more far-reaching in terms of

latency reduction and productivity

enhancement.  

AD


